Every weakly initially m-compact topological space is mPCAP

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Menger probabilistic normed space is a category topological vector space

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...

متن کامل

A First Countable, Initially Ω1-compact but Non-compact Space

We force a first countable, normal, locally compact, initially ω1-compact but non-compact space X of size ω2. The onepoint compactification of X is a non-first countable compactum without any (non-trivial) converging ω1-sequence.

متن کامل

menger probabilistic normed space is a category topological vector space

in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...

متن کامل

Every Banach Space is Reflexive

The title above is wrong, because the strong dual of a Banach space is too strong to assert that the natural correspondence between a space and its bidual is an isomorphism. This, from a categorical point of view, is indeed the right duality concept because it yields a self adjoint dualisation functor. However, for many applications the non–reflexiveness problem can be solved by replacing the n...

متن کامل

Every Hausdorff Compactification of a Locally Compact Separable Space Is a Ga Compactification

1. I n t r o d u c t i o n . In [4], De Groot and Aarts constructed Hausdorff compactifications of topological spaces to obtain a new intrinsic characterization of complete regularity. These compactifications were called GA compactifications in [5] and [7]. A characterization of complete regularity was earlier given by Fr ink [3], by means of Wallman compactifications, a method which led to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2011

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-011-0026-x